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Abstract. The Gaussian algorithm for lattice reduction in dimension 2 is

precisely analysed under a class of realistic probabilistic models, which are of

interest when applying the Gauss algorithm “inside” the LLL algorithm. The
proofs deal with the underlying dynamical systems and transfer operators. All

the main parameters are studied: execution parameters which describe the

behaviour of the algorithm itself as well as output parameters, which describe
the geometry of reduced bases.

1. Introduction

The lattice reduction problem consists in finding a short basis of a lattice of
Euclidean space given an initially skew basis. This reduction problem plays a pri-
mary rôle in many areas of computational mathematics and computer science: for
instance, modern cryptanalysis [14], computer algebra [18] integer linear program-
ming [11] and number theory [5].
In the two-dimensional case, there exists an algorithm due to Lagrange and Gauss
which computes in linear time a minimal basis of a lattice. This algorithm is in a
sense optimal, from both points of view of the time-complexity and the quality of
the output. It can be viewed as a generalization of the Euclidean Algorithm to the
two dimensional-case. For n ≥ 3, the LLL algorithm [10] due to Lenstra, Lenstra
and Lovàsz, computes a reduced basis of an n-dimensional lattice in polynomial
time. However, the notion of reduction is weaker than in the case n = 2, and the
exact complexity of the algorithm (even in the worst-case, and for small dimensions)
is not precisely known. The LLL algorithm uses as a main procedure the Gauss
Algorithm.
This is why it is so important to have a precise understanding of the Gauss Algo-
rithm. First, because this is a central algorithm, but also because it plays a primary
rôle inside the LLL algorithm. The geometry of the n-dimensional case is involved,
and it is easier to well understand the (hyperbolic) geometry of the complex plane
which appears in a natural way when studying the Gauss Algorithm.

The previous results. Gauss’ algorithm has been analyzed in the worst case
by Lagarias, [8], then Vallée [16], who also describes the worst-case input. Then,
Daudé, Flajolet and Vallée [6] completed the first work [7] and provided a detailed
average-case analysis of the algorithm, in a natural probabilistic model which can
be called a uniform model. They study the mean number of iterations, and prove
that it is asymptotic to a constant, and thus essentially independent of the length of
the input. Moreover, they show that the number of iterations follows an asymptotic
geometric law, and determine the ratio of this law. On the other side, Laville and
Vallée [9] study the geometry of the outputs, and describe the law of some output
parameters, when the input model is the previous uniform model.
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The previous analyses only deal with uniform-distributed inputs and it is not pos-
sible to apply these results “inside” the LLL algorithm, because the distribution
of “local bases” which occur along the execution of the LLL algorithm is far from
uniform. Akhavi, Marckert and Rouault [2] showed that, even in the uniform model
where all the vectors of the input bases are independently and uniformy drawn in
the unit ball, the skewness of “local bases” may vary a lot. It is then important
to analyse the Gauss algorithm in a model where the skewness of the input bases
may vary. Furthermore, it is natural from the works of Akhavi [1] to deal with a
probabilistic model where, with a high probability, the modulus of the determinant
det(u, v) of a basis (u, v) is much smaller than the product of the lengths |u| · |v|.
More precisely, a natural model is the so–called model of valuation r, where

P
[
(u, v);

|det(u, v)|
max(|u|, |v|)2

≤ y

]
= Θ(yr+1), with (r > −1).

Remark that, when r tends to -1, this model tends to the “one dimensional model”,
where u and v are colinear. In this case, the Gauss Algorithm “tends” to the
Euclidean Algorithm, and it is important to precisely describe this transition. This
model “with valuation” was already presented in [17] in a slightly different context,
but not actually studied.

Our results. In this paper, we perform an exhaustive study of the main parameters
of Gauss algorithm, in this scale of distributions, and obtain the following results:

(i) We first relate the output density of the algorithm to a classical object of the
theory of modular forms, namely the Eisenstein series, which are eigenfunctions of
the hyperbolic Laplacian [Theorem 1].

(ii) We also focus on the properties of the output basis, and we study three
main parameters: the first minimum, the Hermite constant, and the orthogonal
projection of a second minimum onto the orthogonal of the first one. They all play
a fundamental rôle in a detailed analysis of the LLL algorithm. We relate their
“contour lines” with classical curves of the hyperbolic complex plane [Theorem
2] and provide sharp estimates for the distribution of these output parameters
[Theorem 3].

(iii) We finally consider various parameters which describe the execution of the
algorithm (in a more precise way than the number of iterations), namely the so–
called additive costs, the bit-complexity, the length decreases, and we analyze their
probabilistic behaviour [Theorems 4 and 5].

Along the paper, we explain the rôle of the valuation r, and the transition phenom-
ena between the Gauss Algorithm and the Euclidean algorithms which occur when
r → −1.

Towards an analysis of the LLL algorithm. The present work thus fits as a
component of a more global enterprise whose aim is to understand theoretically how
the LLL algorithm performs in practice, and to quantify precisely the probabilistic
behaviour of lattice reduction in higher dimensions.
We are particularly interested in understanding the results of experiments con-
ducted by Stehlé [15] which are summarized in Figure 1. We return to these ex-
periments and their meanings in Section 2.8. We explain in Section 3.3 how our
present results may explain such phenomena and constitute a first (important) step
in the probabilistic analysis of the LLL algorithm.

Plan of the paper. We first present in Section 2 the algorithms to be analyzed
and their main parameters. Then we perform a probabilistic analysis of such pa-
rameters: Section 3 is devoted to output parameters, whereas Section 4 focuses on
execution parameters.
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Figure 1. On the left: experimental results for the ratio

(1/n) log |b1|
(det L)1/n [here, n is the dimension, b1 is the first vector of the

LLL reduced basis and det L is the determinant of the lattice L]. On

the right, the output distribution of “local bases” for the LLL algorithm

(see Sections 2.8 and 3.3).

2. Lattice reduction in dimension 2

We present here the two versions of the Gauss algorithms, in their (initial) vec-
torial framework, then in the complex framework. We present the main parameters
of interest, and how they intervene in the analysis of the LLL algorithm.

2.1. Lattices and bases. A lattice of rank 2 in the complex plane C is the set L
of elements of C (“vectors”) defined by

L = Zu⊕ Zv = {xu + yv; x, y ∈ Z},

where (u, v), called a basis, is a pair of R–linearly independent elements of C. A
lattice is generated by infinitely many bases that are related to each other by integer
matrices of determinant ±1.

With a small abuse of language, we use the same notation for denoting a complex
number z ∈ C and the vector of R2 whose components are (<z,=z). For a complex
z, we denote by |z| both the modulus of the complex z and the Euclidean norm of
the vector z; for two complex numbers u, v, we denote by (u · v) the scalar product
between the two vectors u and v. The following relation between two complex
numbers u, v will be very useful in the sequel

(1)
v

u
=

(u · v)
|u|2

+ i
det(u, v)
|u|2

.

Amongst all the bases of a lattice L, some that are called reduced enjoy the property
of being formed with “short” vectors. In dimension 2, the best reduced bases are
minimal bases that satisfy optimality properties: define u to be a first minimum
of a lattice L if it is a nonzero vector of L that has smallest Euclidean norm; the
length of a first minimum of L is denoted by λ1(L). A second minimum v is any
vector amongst the shortest vectors of the lattice that are linearly independent of
u; the Euclidean length of a second minimum is denoted by λ2(L). Then a basis is
minimal if it comprises a first and a second miminum. See Figure 2. In the sequel,
we focus on particular bases which satisfy one of the two following properties:

(P ) it has a positive determinant [i.e., det(u, v) ≥ 0]. Such a basis is called
positive.

(A) it has a positive scalar product [i.e., (u ·v) ≥ 0]. Such a basis is called acute.
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Figure 2. A lattice and two of its bases represented by the parallel-

ogram they span. The first basis (on the left) is skew, the second one

(on the right) is minimal (reduced).

Without loss of generality, we may always suppose that a basis is acute (resp.
positive), since one of (u, v) and (u,−v) is .

The following result gives characterizations of minimal bases. Its proof is omitted.

Proposition 1. [Characterizations of minimal bases.]
(P ) [Positive bases.] Let (u, v) be a positive basis. Then the following two condi-
tions (a) and (b) are equivalent:

(a) the basis (u, v) is minimal;
(b) the pair (u, v) satisfies the three simultaneous inequalities:

(P1) : | v
u
| ≥ 1, (P2) : |<(

v

u
)| ≤ 1

2
and (P3) : =(

v

u
) ≥ 0

(A) [Acute bases.] Let (u, v) be an acute basis. Then the following two conditions
(a) and (b) are equivalent:

(a) the basis (u, v) is minimal;
(b) the pair (u, v) satisfies the two simultaneous inequalities:

(A1) : | v
u
| ≥ 1, and (A2) : 0 ≤ <(

v

u
) ≤ 1

2
.

2.2. The Gaussian reduction schemes. There are two reduction processes, ac-
cording as one focuses on positive bases or acute bases.

The positive Gauss Algorithm. The positive lattice reduction algorithm takes
as input a positive arbitrary basis and produces as output a positive minimal basis.
The positive Gauss algorithm aims at satisfying simultaneously the conditions (P )
of Proposition 1. The conditions (P1) and (P3) are simply satisfied by an exchange
between vectors followed by a sign change v := −v. The condition (P2) is met by
an integer translation of the type:

v := v −mu with m := br(v, u)e , r(v, u) := <(
v

u
) =

(u · v)
|u|2

,

where bxe represents the integer nearest to the real x.
On the input pair (u, v) = (v0, v1), the positive Gauss Algorithm computes a se-
quence of vectors vi defined by the relations

(2) vi+1 = −vi−1 + mi vi with mi := br(vi−1, vi)e .

Here, each quotient mi is an integer of Z, p ≡ p(u, v) denotes the number of
iterations, and the final pair (vp, vp+1) satisfies the conditions (P ) of Proposition
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PGauss(u, v)
Input. A positive basis (u, v) of C with |v| ≤ |u|, |r(v, u)| ≤ (1/2).
Output. A positive minimal basis (u, v) of L(u, v) with |v| ≥ |u|.
While |v| ≤ |u| do

(u, v) := (v,−u);

m := br(v, u)e, with r(v, u) =
(u · v)
|u|2

;

v := v −mu;

1. Each step defines a unimodular matrix Mi with detMi = 1,

Mi =
(

mi −1
1 0

)
, with

(
vi+1

vi

)
= Mi

(
vi

vi−1

)
,

so that the Algorithm produces a matrix M for which

(3)
(

vp+1

vp

)
= M

(
v1

v0

)
with M := Mp · Mp−1 · . . . · M1.

The acute Gauss Algorithm. The acute reduction algorithm takes as input an
arbitrary acute basis and produces as output an acute minimal basis. This AGauss
algorithm aims at satisfying simultaneously the conditions (A) of Proposition 1.
The condition (A1) is simply satisfied by an exchange, and the condition (A2) is
met by an integer translation of the type:

v := ε(v −mu) with m := br(v, u)e , ε = sign (r(v, u)− br(v, u)e) ,

where r(v, u) is defined as previously.

AGauss(u, v)
Input. A basis (u, v) of C with |v| ≤ |u|, 0 ≤ r(v, u) ≤ (1/2).
Output. An acute minimal basis (u, v) of L(u, v) with |v| ≥ |u|.
While |v| ≤ |u| do

(u, v) := (v, u);

m := br(v, u)e ; ε := sign[r(v, u)− br(v, u)e], with r(v, u) =
(u · v)
|u|2

;

v := ε(v −mu);

On the input pair (u, v) = (w0, w1), the Gauss Algorithm computes a sequence of
vectors wi defined by the relations wi+1 = εi(wi−1 − m̃i wi) with

(4) m̃i := br(wi−1, wi)e , εi = sign (r(wi−1, wi)− br(wi−1, wi)e) .

Here, each quotient m̃i is a positive integer, p ≡ p(u, v) denotes the number of
iterations [this will be the same as the previous one], and the final pair (wp, wp+1)
satisfies the conditions (A) of Proposition 1. Each step defines a unimodular matrix
Ni with detNi = εi = ±1,

Ni =
(
−εi m̃i εi

1 0

)
, with

(
wi+1

wi

)
= Ni

(
wi

wi−1

)
,

so that the algorithm produces a matrix N for which(
wp+1

wp

)
= N

(
w1

w0

)
with N := Np · Np−1 · . . . · N1.
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Comparison between the two algorithms. These algorithms are closely re-
lated, but different. The AGauss Algorithm can be viewed as a folded version of
the PGauss Algorithm, in the sense defined in [3]. And the following is true.
Consider two bases: a positive basis (v0, v1), and an acute basis (w0, w1) that satisfy
w0 = v0 and w1 = η1 v1 with η1 = ±1. Then the sequences of vectors (vi) and (wi)
computed by the two Gauss algorithms [defined in (2,4)] satisfy wi = ηi vi for some
ηi = ±1 and the quotient m̃i is the absolute value of quotient mi.

Then, when studying the two kinds of parameters –execution parameters, or output
parameters– the two algorithms are essentially the same. We shall use the PGauss
Algorithm for studying the output parameters, and the AGauss Algorithm for the
execution parameters.

2.3. Main parameters of interest. The length of a pair (u, v) ∈ Z[i]× Z[i] is

`(u, v) := max{`(|u|2), `(|v|2)} = `
(
max{|u|2, |v|2}

)
,

where `(x) is the binary length of the integer x. The Gram matrix G(u, v) is defined
as

G(u, v) =
(
|u|2 (u · v)

(u · v) |v|2
)

.

In the following, we consider subsets of inputs of size M , endowed with some discrete
probability PM , and study the parameters as random variables defined on these
sets.
All the computations of the Gauss Algorithm are done on the Gram matrices
G(vi, vi+1) of the pair (vi, vi+1). The initialization of the Gauss algorithm com-
putes the Gram Matrix of the initial basis: it takes a quadratic time with respect
to the length of the input `(u, v). After this, all the computations are directly done
on these matrices; more precisely, each step of the process is a Euclidean division
between the two coefficients of the first line of the Gram matrix G(vi, vi−1) of the
pair (vi, vi−1) for obtaining the quotient mi, followed with the computation of the
new coefficients of the Gram matrix G(vi+1, vi), namely

|vi+1|2 := |vi−1|2 − 2mi (vi · vi−1) + m2
i |vi|2, (vi+1 · vi) := mi |vi|2 − (vi−1 · vi).

Then the cost of the i-th step is proportional to `(mi) · `(|vi|2). Then, the bit-
complexity of the core of the Gauss Algorithm is expressed as a function of

(5) B(u, v) =
p(u,v)∑
i=1

`(mi) · `(|vi|2),

where p(u, v) is the number of iterations of the Gauss Algorithm. In the sequel, B
will be called the bit-complexity.

The bit-complexity B(u, v) is one of our parameters of interest, and we compare
it to other simpler costs. Define three new costs, the quotient bit-cost Q(u, v), the
difference cost D(u, v), and the approximate difference cost D:

(6) Q(u, v) =
p(u,v)∑
i=1

`(mi), D(u, v) =
p(u,v)∑
i=1

`(mi)
[

`(|vi|2)− `(|v0|2)
]

,

D(u, v) := 2
p(u,v)∑
i=1

`(mi) log
∣∣∣vi

v

∣∣∣ ,
which satisfy D(u, v)−D(u, v) = Θ(Q(u, v)) and

(7) B(u, v) = Q(u, v) `(|u|2) + D(u, v) + [D(u, v)−D(u, v)] .
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We are then led to study two main parameters related to the bit-cost, that may be
of independent interest:
(a) The so-called additive costs, which provide a generalization of cost Q. They
are defined as the sum of elementary costs, which only depend on the quotients
mi. More precisely, from a positive elementary cost c defined on N, we consider the
total cost on the input (u, v) defined as

(8) C(c)(u, v) =
p(u,v)∑
i=1

c(|mi|) .

(b) The length decreases, namely the i-th length decrease di and the total length
decrease d, defined as

(9) di :=
∣∣∣∣ vi

v0

∣∣∣∣2 , d :=
∣∣∣∣vp

v0

∣∣∣∣2 .

Finally, the configuration of the output basis (û, v̂) is described by three parameters
closely related to the minima of the lattice L(u, v)

(10) λ(u, v) := λ1(L(u, v)) = |û|, µ(u, v) :=
|det(u, v)|

λ(u, v)
= |v̂?|,

(11) γ(u, v) :=
λ2(u, v)
|det(u, v)|

=
λ(u, v)
µ(u, v)

=
|û|
|v̂?|

.

[Here, v̂? is the orthogonal projection of v̂ onto the orthogonal of <u>]. We come
back later to these output parameters and shall explain in Sections 2.8 and 3.3 why
they are so important.

2.4. The complex framework. Many structural characteristics of lattices and
bases are invariant under linear transformations —similarity transformations in
geometric terms— of the form Sλ : u 7→ λu with λ ∈ C \ {0}. An instance
is the execution of the Gauss algorithm itself: It should also be observed that
exchange operations or translations introduced above only depend on the complex
ratio z = v/u. Then, the sequence of vectors computed on an input pair Sλ(u, v)
coincides with the sequence Sλ(vi), where vi is the sequence computed by the
algorithm on the input (u, v). This makes it possible to give a formulation of the
Gauss algorithm entirely in terms of complex numbers. A second instance are our
execution parameters B,C, d which are also invariant under similarity. A third
instance is the characterization of minimal bases given in Proposition 1 that only
depends on the ratio z = v/u.

It is thus natural to consider lattice bases taken up to equivalence under similarity,
and it is sufficient to restrict attention to lattice bases of the form (1, z). We denote
by L(z) the lattice L(1, z). In the complex framework, the geometric transformation
effected by each step of the algorithm consists of an inversion-symmetry S : z 7→
1/z, followed by a translation z 7→ T−mz with T (z) = z + 1, ans a possible sign
change J : z 7→ −z.

The upper halfplane H := {z ∈ C; =(z) > 0} plays a central rôle for the PGauss
Algorithm, while the right halfplane {z ∈ C; <(z) ≥ 0, =(z) 6= 0} plays a central
rôle in the AGauss algorithm. Remark just that the right halfplane is the union
H+ ∪ JH− where J : z 7→ −z is the sign change and

H+ := {z ∈ C; =(z) > 0,<(z) ≥ 0}, H− := {z ∈ C; =(z) > 0,<(z) ≤ 0}.
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(− 1
2 , 0) ( 1

2 , 0)

B \ F

F+F−

B̃ \ F̃

F+

JF−

(0, 0)

(0, 1)

(0,−1)

D

ST 2JF+

STF−

STJF+

SF−

F+

ST 2JSF−

Figure 3. On the left and in the middle: the fundamental domains

F , eF and the strips B, eB(see Section 2.4). On the right, the six domains

which constitute the domain B+ \ D+ (see Section 2.6).

In this context, the PGauss algorithm brings z into the vertical strip B+∪B− with

B =
{

z ∈ H; |<(z)| ≤ 1
2

}
, B+ := B ∩H+, B− := B ∩H−,

reduces to the iteration of the mapping

U(z) = −1
z

+
⌊
<
(

1
z

)⌉
,

and stops as soon as z belongs to the domain F = F+ ∪ F− with

(12) F =
{

z ∈ H; |z| ≥ 1, |<(z)| ≤ 1
2

}
, F+ := F ∩H+, F− := F ∩H−.

Such a domain, represented in Figure 3, is familiar from the theory of modular
forms [13] or the reduction theory of quadratic forms [12].

The AGauss algorithm brings z into the vertical strip

B̃ =
{

z ∈ C; =(z) 6= 0, 0 ≤ <(z) ≤ 1
2

}
= B+ ∪ JB−,

reduces to the iteration of the mapping

Ũ(z) = ε

(
1
z

) (
1
z
−
⌊
<
(

1
z

)⌉)
with ε(z) := sign(<(z)− b<(z)e),

and stops as soon as z belongs to the domain F̃

(13) F̃ =
{

z ∈ C; |z| ≥ 1 0 ≤ <(z) ≤ 1
2

}
= F+ ∪ JF−.

Each version of the algorithm gives rise to a different set of LFT’s. According to
the parameters of interest –output parameters or execution parameters– these two
sets may be more or less adequate.
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Figure 4. On the left, the “central” festoon F(0,1). On the right,

three festoons of the strip B, relative to (0, 1), (1, 3), (−1, 3) and the two

half-festoons at (−1, 2) and (1, 2).

2.5. The LFT’s used by the PGauss Algorithm. The complex numbers which
intervene in the PGauss algorithm on the input z0 = v1/v0 are related to the
vectors (vi) defined in (2) via the relation zi = vi+1/vi. They are directly computed
by the relation zi+1 := U(zi), so that the old zi−1 is expressed with the new one zi

as

zi−1 = h[mi](zi), with h[m](z) :=
1

m− z
.

This creates a continued fraction expansion for the initial complex z0, of the form

z0 =
1

m1 −
1

m2 −
1
...

mp − zp

= h(zp) with h := h[m1] ◦ h[m2] ◦ . . . h[mp],

which expresses the input z = z0 as a function of the output ẑ = zp. More generally,
the i-th complex number zi satisfies

zi = hi(zp) with hi := h[mi+1] ◦ h[mi+2] ◦ . . . h[mp].

The set G of LFTs h : z 7→ (az+b)/(cz+d) defined with the relation z = h(ẑ) sends
the output domain F into the input domain B \ F . It is characterized by the set
Q of possible quadruples (a, b, c, d). A quadruple (a, b, c, d) ∈ Z4 with ad − bc = 1
belongs to Q if and only if one of the three conditions is fulfilled

(i) (c = 1 or c ≥ 3) and (|a| ≤ c/2);
(ii) c = 2, a = 1, b ≥ 0, d ≥ 0;
(iii) c = 2, a = −1, b < 0, d < 0;

There exists a bijection between Q and the set P = {(c, d); c ≥ 1, gcd(c, d) = 1} .
On the other hand, for each pair (a, c) in the set

(14) C := {(a, c);
a

c
∈ [−1/2,+1/2], c ≥ 1; gcd(a, c) = 1},

any LFT of G which admits (a, c) as coefficients can be written as h = h(a,c) ◦ Tm

with m ∈ Z and h(a,c)(z) = (az + b0)/(cz + d0), with |b0| ≤ |a/2|, |d0| ≤ |c/2|. If
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G(a,c) denotes the set of such LFT’s, the domain

(15) F(a,c) =
⋃

h∈G(a,c)

h(F) = h(a,c)

( ⋃
m∈Z

TmF

)
gathers all the transforms of h(F) which belong to B \ F for which h(i∞) = a/c.
It is called the festoon of a/c. In the case when c = 2, there are two half-festoons
at 1/2 and −1/2. See Figure 4.

2.6. The LFT’s of the AGauss Algorithm. In the same vein, the complex
numbers which intervene in the AGauss algorithm on the input z0 = w1/w0 are
related to the vectors (wi) defined in (4) via the relation zi = wi+1/wi. They are
computed by the relation zi+1 := Ũ(zi), so that the old zi−1 is expressed with the
new one zi as

zi−1 = h<mi,εi>(zi) with h<m,ε>(z) :=
ε

m + z
.

This creates a continued fraction expansion for the initial complex z0, of the form

z0 =
ε1

m1 +
ε2

m2 +
ε3
. . .

mp + zp

= h̃(zp) with h̃ := h<m1,ε1>◦h<m2,ε2>◦. . . h<mp,εp>.

More generally, the i-th complex number zi satisfies

(16) zi = h̃i(zp) with h̃i := h<mi+1,εi+1> ◦ h<mi+2,εi+2> ◦ . . . h<mp,εp>.

There are two main parts in the execution of the AGauss Algorithm, according to
the position of the current complex zi. While zi belongs to the disk of diameter
[0, 1/2] whose equation is

D := {z; <
(

1
z

)
≥ 2},

the quotient (m, ε) satisfies (m, ε) ≥ (2,+1) (wrt the lexicographic order). Then,

D =
⋃

h∈H

h(B̃ \ D) with H := {h<m,ε>; (m, ε) ≥ (2,+1)}.

When zi belongs to B̃ \ D, there remains at most two iterations. More precisely,
(see Figure 3),

B̃ \ D =
⋃

h∈K

h(F̃) with K := {I, S, STJ, ST, ST 2J, ST 2JS}.

The subset K is called the final set of LFT’s since it is used only at the end of the
algorithm, whereas the subset H is the core set. Finally, the set G̃ decomposes as

(17) G̃ = H? · K.

2.7. Probabilistic models. We recall that our initial motivation consists in study-
ing the probabilistic behaviour of variables defined on discrete subsets. More pre-
cisely, we consider as valid inputs the sets

ΩM := {(u, v) ∈ Z4;
v

u
∈ B \ F , `(|u|2) = M},

or its tilde version, according to the considered algorithm (PGauss or AGauss).

Since we focus on the invariance of algorithm executions under similarity trans-
formations, we assume that the two random variables |u| and z = v/u are inde-
pendent and consider densities F on pairs of vectors (u, v) which are of the form
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F (u, v) = g(|u|) · f(v/u). Moreover, it is sufficient to consider pairs (u, v) of size
M with a first vector u of the form u = (c, 0) with `(c2) = M . Then, the complex
z = v/u belongs to Q[i] and is of the form (a/c) + i(b/c). When the integer c
tends to ∞, this discrete model “tends” to a continuous model, and the density f
is defined on a subset of C. It is sometimes more convenient to view this density as
a function defined on R2, and we denote by f the function f viewed as a function
of two real variables x, y. A density f on the set S ⊂ C is of valuation r (with
r > −1) if it is of the form

(18) f(z) = yr · g(z) where g(z) 6= 0 for =(z) = 0.

We often deal with the standard density of valuation r, denoted by fr,

(19) fr(z) =
1

A(r)
yr with A(r) =

∫∫
B\F

yrdxdy.

Of course, when r = 0, we recover the uniform distribution on B \ F with A(1) =
(1/12)(2π + 3

√
3). This defines a scale of densities, for which the weight of skew

bases may vary. When r tends to −1, almost all the input bases are formed of
vectors which form a very small angle, and, with a high probability, they represent
hard instances for reducing the lattice.

2.8. The LLL algorithm and the complex framework. Consider a lattice
of Rn generated by a set B := {b1, b2, . . . , bn} of n independent vectors. The
LLL algorithm “reduces” the basis B by successively dealing with two-dimensional
lattices Lk generated by the so-called local bases Bk: The k-th local basis Bk is
formed with the two vectors uk, vk, defined as the orthogonal projection of bk, bk+1

on the orthogonal of the subspace < b1, b2, . . . , bk−1 >. The LLL algorithm is a
succession of calls to the Gauss algorithm on these local bases, and it stops when all
the local bases are reduced (in the Gauss meaning). Then, the complex output ẑk

defined from (ûk, v̂k) as in (1) is an element of the fundamental domain F . Figure
1 (on the right) shows the experimental distribution of outputs ẑk, which does not
seem to depend on index k ∈ [1..n]. There is an accumulation of points in the
“corners” of F , and the mean value of parameter γ is close to 1.04.

3. Output parameters.

This Section describes the probabilistic behaviour of output parameters: we first
analyse the output densities, then we focus on the geometry of our three main
parameters defined in (10, 11). We then explain how this type of result may be
applied in the analysis of the LLL algorithm.

3.1. Output densities. For studying the evolution of distributions (on complex
numbers), we are led to consider the 2–variables function h that corresponds to the
complex mapping z 7→ h(z). More precisely, we consider the function h which is
conjugated to h with respect to map φ, namely h = φ−1 ◦ h ◦ φ, where mappings
φ, φ−1 are linear mappings C2 → C2 defined as

φ(x, y) = (z = x + iy, z = x− iy), φ−1(z, z) =
(

z + z

2
,
z + z

2i

)
.

Since φ and φ−1 are linear mappings, the Jacobian Jh of the mapping h satisfies

(20) Jh(x, y) = |h′(z) · h′(z)| = |h′(z)|2,

since h has real coefficients. Consider any measurable set A ⊂ F . The final density
f̂ on A is brought by all the antecedents h(A) for h ∈ G, which form disjoints
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subsets of B \ F . Then,∫∫
A

f̂(x̂, ŷ) dx̂ dŷ =
∑
h∈G

∫∫
h(A)

f(x, y) dx dy.

Using the expression of the Jacobian (20), and interverting integral and sum lead
to ∑

h∈G

∫∫
A
|h′(ẑ)|2f ◦ h(x̂, ŷ)dx̂dŷ =

∫∫
A

(∑
h∈G

|h′(ẑ)|2f ◦ h(x̂, ŷ)

)
dx̂dŷ.

Finally, the output density f̂ can be expressed as a function of the input density f ,

f̂(x̂, ŷ) =
∑
h∈G

|h′(ẑ)|2f ◦ h(x̂, ŷ).

We now analyze an important particular case, where the initial density is the stan-
dard density of valuation r defined in (19). Since each element of G gives rise to a
unique pair (c, d) with c ≥ 1, gcd(c, d) = 1 for which

(21) |h′(ẑ)| = 1
|cẑ + d|4

, fr ◦ h(x̂, ŷ) =
1

A(r)
ŷr

|cẑ + d|2r
,

the output density on F is f̂r(x̂, ŷ) =
1

A(r)

∑
(c,d)=1

c≥1

ŷr

|cẑ + d|4+2r
.

We have shown:

Theorem 1. When the initial density on B\F is the standard density of valuation
r, denoted by fr and defined in (19), the output density is closely related to an
Eisenstein series Es of weight s = 2 + r. With respect to the Haar measure µ on

SL2(Z), equal to dµ(x, y) = (3/π)(1/y2)dxdy, the output density f̂r is expressed
as

f̂r(x, y) dxdy =
π

3A(r)
F2+r(x, y) dµ(x, y), where Fs(x, y) =

∑
(c,d)=1

c≥1

ys

|cz + d|2s .

is closely related to the classical Eisenstein series Es of weight s, defined as

Es(x, y) :=
1
2

∑
(c,d)∈Z2

(c,d)6=(0,0)

ys

|cz + d|2s = ζ(2s) · [Fs(x, y) + ys] .

The series Es are Maass forms (see for instance the book [4]): they play an impor-
tant rôle in the theory of modular forms, because Es is an eigenfunction for the
Laplacian, relative to the eigenvalue s(1− s).

3.2. Geometry of the output parameters. The main output parameters de-
fined in (10,11) are closely related to their complex versions, related to basis (1, z),

λ(u, v) = |u| · λ(z), µ(u, v) = |u| · µ(z), γ(u, v) = γ(z),

and these last parameters can be expressed with the input–output pair (z, ẑ).

Proposition 2. If z = x + iy is an initial complex number of B \ F leading to a
final complex ẑ = x̂ + iŷ of F , then the three main output parameters defined in
(10,11) admit the following expressions

detL(z) = y, λ2(z) =
y

ŷ
, µ2(z) = yŷ, γ(z) =

1
ŷ
.
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Fo(a, c, ρ) := {(x, y); y > 0,
(
x− a

c

)2

+
(
y − ρ

2c

)2

≤ ρ2

4c2
}

Fa(a, c, t) := {(x, y); y > 0,
(
x− a

c

)2

+ y2 ≤ t2

c2
}

Se(a, c, u) := {(x, y); y > 0, |y| ≤ cu√
1− c2u2

∣∣∣x− a

c

∣∣∣ }.

Figure 5. The three main domains of interest: the Ford disks

Fo(a, c, ρ), the Farey disks Fa(a, c, t), the angular sectors Se(a, c, u).

If z leads to ẑ by using the LFT h ∈ G with z = h(ẑ) = (aẑ + b)/(cẑ + d), then:

λ(z) = |cz − a|, γ(z) =
|cz − a|2

y
, µ(z) =

y

|cz − a|
.

Proof. If the initial pair (v1, v0) is written as in (3) as(
v1

v0

)
= M−1

(
vp+1

vp

)
, with M−1 :=

(
a b
c d

)
and z = h(ẑ) =

aẑ + b

cẑ + d
,

then the total length decrease satisfies

(22)
|vp|2

|v0|2
=

|vp|2

|cvp+1 + dvp|2
=

1
|cẑ + d|2

= |h′(ẑ)|,

[we have used the fact that detM = 1.] This proves that λ2(z) equals |h′(ẑ)| as
soon as z = h(ẑ). Now, for z = h(ẑ), the relations

y =
ŷ

|cẑ + d|2
, ŷ =

y

|cz − a|2
,

easily lead to the end of the proof.

We now consider the following well-known domains defined in Figure 5. The Ford
disk Fo(a, c, ρ) is a disk of center (a/c, ρ/(2c)) and radius ρ/(2c): it is tangent to
y = 0 at point a/c. The Farey disk Fa(a, c, t) is a disk of center (a/c, 0) and radius
t/c. Finally, the angular sector Se(a, c, u) is delimited by two lines which intersect
at a/c, and form with the line y = 0 angles equal to ± arcsin(cu).
These domains intervene for defining the three main domains of interest.

Theorem 2. The domains relative to the main output parameters, defined as

Γ(ρ) := {z ∈ B \ F ; γ(z) ≤ ρ}, Λ(t) := {z ∈ B \ F ; λ(z) ≤ t},
M(u) := {z ∈ B \ F ; µ(z) ≤ u}

are described with Ford disks, Fo(a, c, ρ), Farey disks Fa(a, c, t), and angular sectors
Se(a, c, u). More precisely, if F(a,c) denotes the Festoon relative to pair (a, c) defined
in (15) and if the set C is defined in (14), one has:

Γ(ρ) =
⋃

(a,c)∈C

Fo(a, c, ρ) ∩ F(a,c), Λ(t) =
⋃

(a,c)∈C

Fa(a, c, t) ∩ F(a,c),

M(u) =
⋃

(a,c)∈C

Se(a, c, u) ∩ F(a,c).

These “local” definitions of sets Λ,Γ,M can be transformed in a “global definition”
which no more involves the festoons. It involves, for instance, a subfamily of com-
plete (intersecting) Farey disks (for Λ), or triangles (for M) [see Figure 6]. In the
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Figure 6. On the top: the domain Γ(ρ) := {z; γ(z) ≤ ρ}. On the

left, ρ = 1 (in white). On the right, the domain F(0,1) ∩ Fo(0, 1, ρ) for

ρ = 1, ρ0 = 2/
√

3, ρ1 = (1+ρ0)/2. – On the middle, the domain Λ(t)∩B+,

with Λ(t) := {z; λ(z) ≤ t} for t = 0.193 and t = 0.12. – On the bottom,

the domain M(u) ∩ B+ with M(u) := {z; µ(z) ≤ u} for u = 0.193 and

u = 0.12.
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case of parameter λ, this “global definition” was already provided in [9]. Comput-
ing the measure of disks and angular sectors with respect to a standard density of
valuation r lead to the estimate of the main output distributions:

Theorem 3. When the initial density on B\F is the standard density of valuation
r, the three main output parameters admit the following distributions:

P(r)[γ(z) ≤ ρ] = A1(r) ·
ζ(2r + 3)
ζ(2r + 4)

· ρr+2 for ρ ≤ 1,

P(r)[λ(z) ≤ t] = Θ(tr+2) for r > 0,
P(r)[λ(z) ≤ t] = Θ(t2| log t|) for r = 0,
P(r)[λ(z) ≤ t] = Θ(t2r+2) for r < 0,

P(r)[µ(z) ≤ u] = Θ(u2r+2).

In the case when r ≥ 0, there are precise estimates for parameter λ, when t → 0:

P(r)[λ(z) ≤ t] ∼t→0 A2(r)
ζ(r + 1)
ζ(r + 2)

· tr+2 for r > 0,

P(r)[λ(z) ≤ t] ∼t→0 A2(0)
1

ζ(2)
t2| log t| for r = 0.

The constants Ai(r) involve Euler’s Beta function B(a, b) and the measure A(r),
in the following way

A1(r) :=
2B(r + 3/2, 3/2)

A(r)
, A2(r) =

B((r + 1)/2, 3/2)
A(r)

.

3.3. Returning to the LLL Algorithm. The LLL algorithm aims at reducing
all the local bases Bk in the Gauss meaning. For obtaining the output density at the
end of the algorithm, it is interesting to describe the evolution of the distribution
of the local bases along the execution of the algorithm. The LLL algorithm first
deals with local bases with even indices. Consider two successive bases Bk and
Bk+2 respectively endowed with some initial densities Fk and Fk+2. Denote by zk

and zk+2 the complex numbers associated to local bases (uk, vk) and (uk+2, vk+2)
via relation (1). Then, the LLL algorithm reduces these two local bases (in the
Gauss meaning) and computes two reduced local bases denoted by (ûk, v̂k) and
(ûk+2, v̂k+2), which satisfy in particular

|v̂?
k| = |uk| · µ(zk), |ûk+2| = |uk+2| · λ(zk+2).

Then our Theorem 3 provides insights on the distribution of µ(zk), λ(zk+2). Since,
in our model, the random variables |uk| and zk (resp. |uk+2| and zk+2) are indepen-
dent, we obtain a precise information on the distribution of the norms |v̂?

k|, |ûk+2|.
In a second phase, the LLL algorithm considers the local bases with an odd index.
Now, the basis Bk+1 is formed (up to a similarity) from the two previous output
bases, as:

uk+1 = |v̂?
k|, vk+1 = ν|v̂?

k|+ i|ûk+2|,
where ν can be assumed to follow a uniform law on [−1/2,+1/2]. Moreover, at least
at the beginning of the algorithm, the two variables |v̂?

k|, |ûk+2| are independent.
All this allows to obtain precise informations on the new input density Fk+1 of the
local basis Bk+1. We then hope to “follow” the evolution of densities of local bases
along the execution of the LLL algorithm.
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4. Execution parameters.

We finally focus on parameters which describe the execution of the algorithm:
we are mainly interested in the bit–complexity, but we also study additive costs,
and length decreases that may be of independent interest.

4.1. Transfer operators. The operator Xs,[h], when acting on functions F of two
variables, and relative to a mapping h, depends on a (complex) parameter s and is
formally defined as

X2s,[h][F ](z, u) = |h′(z)|s · |h′(u)|s · F (h(z), h(u)).

More generally, if a cost c(h) is defined for the mapping h, it is natural to add a new
parameter w for marking the cost, and consider the weighted operator Xs,w,(c),[h]

defined as

X2s,w,c,[h][F ](z, u) = exp[wc(h)] · |h′(z)|s · |h′(u)|s · F (h(z), h(u)).

Such operators satisfy a crucial relation of composition: We easily remark that
Xs,[h] ◦Xs,[g] = Xs,[g◦h], and, when the cost c is additive, i.e., c(g ◦h) = c(g)+c(h),
the following relation holds:

(23) Xs,w,(c),[h] ◦Xs,w,(c),[g] = Hs,w,(c),[g◦h].

We recall the definition of sets G̃,H,K relative to the LFT’s used by the AGauss
Algorithm, (see Section 2.6), and their fundamental decomposition (17), namely
G̃ = H? ·K. The weighted transfer operators associated to the AGauss Algorithm,
namely

Hs,w,(c) :=
∑
h∈H

Xs,w,(c),[h], Ks,w,(c) :=
∑
h∈K

Xs,w,(c),[h] Gs,w :=
∑
h∈eG

Xs,w,[h],

satisfy, with (23) and (17), the relation

(24) Gs,w,(c) = Ks,w,(c) ◦ (I −Hs,w,(c))−1.

In the same vein, the plain transfer operators (i.e., unweighted) defined as the sum
of operators Xs,[h] satisfy the relation

Gs = Ks ◦ (I −Hs)−1.

When acting on functions of class C1 and weighted by costs of moderate growth
[i.e., c(h[m] = O(log m)], the operator Hs,w,(c) possesses nice spectral properties,
and, in particular, for complex numbers s, w close enough to the real axis, a unique
dominant eigenvalue, denoted by λ(c)(s, w).

4.2. Additive costs. For analyzing an additive cost in the continuous model rela-
tive to a density f , we use the moment generating function of the cost C(c), denoted
by E(f)(exp[wC(c)]) which satisfies

E(f)(exp[wC(c)]) =
∑
h∈eG

exp[w(̧h)]
∫∫

h( eF)

f(x, y)dxdy.

When the density f has a valuation r and is of the form (18), using a change of
variables, the expression of the Jacobian, and relation (21) leads to

E(f)(exp[wC(c)]) =
∑
h∈eG

exp[w(̧h)]
∫∫

eF |h
′(z)|2+rg(h(z), h(z))dxdy.
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This expression involves the transfer operator G2+r,w of the algorithm AGauss ,
and with (24),

E(f)(exp[wC(c)]) =
∫∫

eF K2+r,w ◦ (I −H2+r,w)−1[g](z, z)dxdy

The asymptotic behaviour of P[C(c) = k] is obtained by extracting the coefficient of
exp[kw] in the moment generating function. This series has a pôle at ewr for a value
of wr defined by the equation λ(c)(2 + r, wr) = 1. Then, with classical methods of
analytical combinatorics, we obtained:

Theorem 4. Consider a step-cost c of moderate growth, namely c : N → R+

with c(m) = O(log(m)) and the relative additive cost C(c). Then, for any density
of valuation r, the cost C(c) follows an asymptotic geometric law. Moreover, the
ratio of this law is closely related to the dominant eigenvalue of the core transfer
operator Hs,w,(c), via the relation

lim
k→∞

1
k

log P(f)[C(c) = k] = −wr, with log λ(c)(2 + r, wr) = 0.

This ratio wr only depends on the valuation r, not on the density itself, and satisfies
wr = Θ(r + 1) when r → −1.

4.3. Bit-complexity. Section 2.3 explains why it is sufficient to study costs
Q,D,D. All these costs are invariant by similarity, i.e., X(λu, λv) = X(u, v) for
X ∈ {Q,D,D}. If, with a small abuse of notation, we let X(z) := X(1, z), we are
led to study the main costs of interest in the complex framework.
In the same vein as in (22), the i-th length decrease can be expressed with the
derivative of the LFT hi defined in (16), as

|vi|2

|v0|2
= |h′i(ẑ)| so that log

|vi|2

|v0|2
= log |h′i(ẑ)|.

Remark that log |h′i(ẑ)| · |h′i(ẑ)|s is just the derivative of |h′i(ẑ)|s with respect to s.
To an operator Xs,w,(c),[h], we associate two operators W(c)Xs and ∆Xs defined as

W(c)Xs,[h] =
d

dw
Xs,w,(c),[h]|w=0, ∆Xs,[h] =

d

ds
Xs,0,(c),[h].

The operator W(c) is using for weighting with cost c, while ∆ weights with log |h′(ẑ)|.
The refinement of the decomposition of the set G as

G+ := H+K = [H?] · H · [H?K]

gives rise to the parallel decomposition of the operators (in the reverse order). If
we weight the second factor with the help of W , we obtain the operator[

Ks ◦ (I −Hs)−1
]
◦ [WHs] ◦ (I −Hs)−1

which is the “generating operator” of the cost Q(z). If we weight the second factor
with the help of W , and take the derivative ∆ of the third one, then we obtain the
operator

∆
[
Ks ◦ (I −Hs)−1

]
◦ [WHs] ◦ (I −Hs)−1

which is the “generating operator” of the cost D(z).
Then, for a density of valuation r, of the form (18), one has:

E(r)[Q] =
∫∫

eF WG2+r[g](z, z)dxdy,

E(r)[D] =
∫∫

eF ∆
[
K2+r ◦ (I −H2+r)−1

]
◦ [WH2+r] ◦ (I −H2+r)−1[g](z, z)dxdy
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Theorem 5. On the set ΩM of inputs of size M endowed with a valuation r,
the central execution of the Gauss algorithm has a mean bit–complexity which is
linear with respect to the size M . More precisely, for an initial standard density of
valuation r, one has

EM,(r) = β(r)M + α(r) + εr(M)

with
εr(M) = O(M2 exp[−(2r + 1)M ]) for −1/2 < r ≤ 0,
εr(M) = O(M2 exp[−M ]) for r ≥ 0.

When r → −1, then the two constants α(r) and β(r) satisfy
β(r) =∼ (r + 1)−1, α(r) ∼ (r + 1)−2.
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